Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Netw Neurosci ; 8(1): 138-157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562298

RESUMO

Despite a five order of magnitude range in size, the brains of mammals share many anatomical and functional characteristics that translate into cortical network commonalities. Here we develop a machine learning framework to quantify the degree of predictability of the weighted interareal cortical matrix. Partial network connectivity data were obtained with retrograde tract-tracing experiments generated with a consistent methodology, supplemented by projection length measurements in a nonhuman primate (macaque) and a rodent (mouse). We show that there is a significant level of predictability embedded in the interareal cortical networks of both species. At the binary level, links are predictable with an area under the ROC curve of at least 0.8 for the macaque. Weighted medium and strong links are predictable with an 85%-90% accuracy (mouse) and 70%-80% (macaque), whereas weak links are not predictable in either species. These observations reinforce earlier observations that the formation and evolution of the cortical network at the mesoscale is, to a large extent, rule based. Using the methodology presented here, we performed imputations on all area pairs, generating samples for the complete interareal network in both species. These are necessary for comparative studies of the connectome with minimal bias, both within and across species.

2.
Adv Sci (Weinh) ; 9(10): e2103827, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35137562

RESUMO

Parkinson's disease (PD) evolves over an extended and variable period in humans; years prior to the onset of classical motor symptoms, sleep and biological rhythm disorders develop, significantly impacting the quality-of-life of patients. Circadian-rhythm disorders are accompanied by mild cognitive deficits that progressively worsen with disease progression and can constitute a severe burden for patients at later stages. The gold-standard 6-methyl-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP) macaque model of PD recapitulates the progression of motor and nonmotor symptoms over contracted periods of time. Here, this multidisciplinary/multiparametric study follows, in five animals, the steady progression of motor and nonmotor symptoms and describes their reversal following grafts of neural precursors in diverse functional domains of the basal ganglia. Results show unprecedented recovery from cognitive symptoms in addition to a strong clinical motor recuperation. Both motor and cognitive recovery and partial circadian rhythm recovery correlate with the degree of graft integration, and in a subset of animals, with in vivo levels of striatal dopaminergic innervation and function. The present study provides empirical evidence that integration of neural precursors following transplantation efficiently restores function at multiple levels in parkinsonian nonhuman primates and, given interindividuality of disease progression and recovery, underlines the importance of longitudinal multidisciplinary assessments in view of clinical translation.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Animais , Disfunção Cognitiva/etiologia , Dopamina , Humanos , Estudos Longitudinais , Macaca
3.
Nat Commun ; 13(1): 503, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082302

RESUMO

Neocortical computations underlying vision are performed by a distributed network of functionally specialized areas. Mouse visual cortex, a dense interareal network that exhibits hierarchical properties, comprises subnetworks interconnecting distinct processing streams. To determine the layout of the mouse visual hierarchy, we have evaluated the laminar patterns formed by interareal axonal projections originating in each of ten areas. Reciprocally connected pairs of areas exhibit feedforward/feedback relationships consistent with a hierarchical organization. Beta regression analyses, which estimate a continuous hierarchical distance measure, indicate that the network comprises multiple nonhierarchical circuits embedded in a hierarchical organization of overlapping levels. Single-unit recordings in anaesthetized mice show that receptive field sizes are generally consistent with the hierarchy, with the ventral stream exhibiting a stricter hierarchy than the dorsal stream. Together, the results provide an anatomical metric for hierarchical distance, and reveal both hierarchical and nonhierarchical motifs in mouse visual cortex.


Assuntos
Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Biologia Computacional , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Visual/patologia , Vias Visuais/patologia
4.
Neuron ; 110(2): 185-187, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35051363

RESUMO

In this issue of Neuron, Xu et al. (2022) use electrical microstimulation of macaque prefrontal cortex combined with functional MRI to map weighted orderly topographic relationships with other association cortex domains, revealing a spatially embedded large-scale organization likely to be functionally important.


Assuntos
Conectoma , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Macaca , Neurônios/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem
5.
Neuron ; 109(23): 3862-3878.e5, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672985

RESUMO

Cognitive functions are subserved by rhythmic neuronal synchronization across widely distributed brain areas. In 105 area pairs, we investigated functional connectivity (FC) through coherence, power correlation, and Granger causality (GC) in the theta, beta, high-beta, and gamma rhythms. Between rhythms, spatial FC patterns were largely independent. Thus, the rhythms defined distinct interaction networks. Importantly, networks of coherence and GC were not explained by the spatial distributions of the strengths of the rhythms. Those networks, particularly the GC networks, contained clear modules, with typically one dominant rhythm per module. To understand how this distinctiveness and modularity arises on a common anatomical backbone, we correlated, across 91 area pairs, the metrics of functional interaction with those of anatomical projection strength. Anatomy was primarily related to coherence and GC, with the largest effect sizes for GC. The correlation differed markedly between rhythms, being less pronounced for the beta and strongest for the gamma rhythm.


Assuntos
Encéfalo , Ritmo Gama , Encéfalo/fisiologia , Cognição , Ritmo Gama/fisiologia , Neurônios
6.
Neuron ; 109(21): 3500-3520.e13, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34536352

RESUMO

Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.


Assuntos
Dopamina , Memória de Curto Prazo , Animais , Dopamina/metabolismo , Haplorrinos , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia
7.
Curr Biol ; 31(20): 4436-4448.e5, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34437842

RESUMO

What are the key topological features of connectivity critically relevant for generating the dynamics underlying efficient cortical function? A candidate feature that has recently emerged is that the connectivity of the mammalian cortex follows an exponential distance rule, which includes a small proportion of long-range high-weight anatomical exceptions to this rule. Whole-brain modeling of large-scale human neuroimaging data in 1,003 participants offers the unique opportunity to create two models, with and without long-range exceptions, and explicitly study their functional consequences. We found that rare long-range exceptions are crucial for significantly improving information processing. Furthermore, modeling in a simplified ring architecture shows that this improvement is greatly enhanced by the turbulent regime found in empirical neuroimaging data. Overall, the results provide strong empirical evidence for the immense functional benefits of long-range exceptions combined with turbulence for information processing.


Assuntos
Conectoma , Animais , Encéfalo , Conectoma/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Mamíferos , Processos Mentais , Neuroimagem/métodos
8.
Front Syst Neurosci ; 15: 669256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122023

RESUMO

Cross-modal effects provide a model framework for investigating hierarchical inter-areal processing, particularly, under conditions where unimodal cortical areas receive contextual feedback from other modalities. Here, using complementary behavioral and brain imaging techniques, we investigated the functional networks participating in face and voice processing during gender perception, a high-level feature of voice and face perception. Within the framework of a signal detection decision model, Maximum likelihood conjoint measurement (MLCM) was used to estimate the contributions of the face and voice to gender comparisons between pairs of audio-visual stimuli in which the face and voice were independently modulated. Top-down contributions were varied by instructing participants to make judgments based on the gender of either the face, the voice or both modalities (N = 12 for each task). Estimated face and voice contributions to the judgments of the stimulus pairs were not independent; both contributed to all tasks, but their respective weights varied over a 40-fold range due to top-down influences. Models that best described the modal contributions required the inclusion of two different top-down interactions: (i) an interaction that depended on gender congruence across modalities (i.e., difference between face and voice modalities for each stimulus); (ii) an interaction that depended on the within modalities' gender magnitude. The significance of these interactions was task dependent. Specifically, gender congruence interaction was significant for the face and voice tasks while the gender magnitude interaction was significant for the face and stimulus tasks. Subsequently, we used the same stimuli and related tasks in a functional magnetic resonance imaging (fMRI) paradigm (N = 12) to explore the neural correlates of these perceptual processes, analyzed with Dynamic Causal Modeling (DCM) and Bayesian Model Selection. Results revealed changes in effective connectivity between the unimodal Fusiform Face Area (FFA) and Temporal Voice Area (TVA) in a fashion that paralleled the face and voice behavioral interactions observed in the psychophysical data. These findings explore the role in perception of multiple unimodal parallel feedback pathways.

9.
Neuroimage ; 229: 117726, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33484849

RESUMO

Multi-modal neuroimaging projects such as the Human Connectome Project (HCP) and UK Biobank are advancing our understanding of human brain architecture, function, connectivity, and their variability across individuals using high-quality non-invasive data from many subjects. Such efforts depend upon the accuracy of non-invasive brain imaging measures. However, 'ground truth' validation of connectivity using invasive tracers is not feasible in humans. Studies using nonhuman primates (NHPs) enable comparisons between invasive and non-invasive measures, including exploration of how "functional connectivity" from fMRI and "tractographic connectivity" from diffusion MRI compare with long-distance connections measured using tract tracing. Our NonHuman Primate Neuroimaging & Neuroanatomy Project (NHP_NNP) is an international effort (6 laboratories in 5 countries) to: (i) acquire and analyze high-quality multi-modal brain imaging data of macaque and marmoset monkeys using protocols and methods adapted from the HCP; (ii) acquire quantitative invasive tract-tracing data for cortical and subcortical projections to cortical areas; and (iii) map the distributions of different brain cell types with immunocytochemical stains to better define brain areal boundaries. We are acquiring high-resolution structural, functional, and diffusion MRI data together with behavioral measures from over 100 individual macaques and marmosets in order to generate non-invasive measures of brain architecture such as myelin and cortical thickness maps, as well as functional and diffusion tractography-based connectomes. We are using classical and next-generation anatomical tracers to generate quantitative connectivity maps based on brain-wide counting of labeled cortical and subcortical neurons, providing ground truth measures of connectivity. Advanced statistical modeling techniques address the consistency of both kinds of data across individuals, allowing comparison of tracer-based and non-invasive MRI-based connectivity measures. We aim to develop improved cortical and subcortical areal atlases by combining histological and imaging methods. Finally, we are collecting genetic and sociality-associated behavioral data in all animals in an effort to understand how genetic variation shapes the connectome and behavior.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Internacionalidade , Neuroanatomia/métodos , Neuroimagem/métodos , Animais , Callithrix , Conectoma/métodos , Conectoma/tendências , Humanos , Processamento de Imagem Assistida por Computador/tendências , Macaca mulatta , Neuroanatomia/tendências , Neuroimagem/tendências , Primatas , Especificidade da Espécie
10.
Neuroimage ; 225: 117479, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33099005

RESUMO

Hierarchy is a major organizational principle of the cortex and underscores modern computational theories of cortical function. The local microcircuit amplifies long-distance inter-areal input, which show distance-dependent changes in their laminar profiles. Statistical modeling of these changes in laminar profiles demonstrates that inputs from multiple hierarchical levels to their target areas show remarkable consistency, allowing the construction of a cortical hierarchy based on a principle of hierarchical distance. The statistical modeling that is applied to structure can also be applied to laminar differences in the oscillatory coherence between areas thereby determining a functional hierarchy of the cortex. Close examination of the anatomy of inter-areal connectivity reveals a dual counterstream architecture with well-defined distance-dependent feedback and feedforward pathways in both the supra- and infragranular layers, suggesting a multiplicity of feedback pathways with well-defined functional properties. These findings are consistent with feedback connections providing a generative network involved in a wide range of cognitive functions. A dynamical model constrained by connectivity data sheds insight into the experimentally observed signatures of frequency-dependent Granger causality for feedforward versus feedback signaling. Concerted experiments capitalizing on recent technical advances and combining tract-tracing, high-resolution fMRI, optogenetics and mathematical modeling hold the promise of a much improved understanding of lamina-constrained mechanisms of neural computation and cognition. However, because inter-areal interactions involve cortical layers that have been the target of important evolutionary changes in the primate lineage, these investigations will need to include human and non-human primate comparisons.


Assuntos
Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Animais , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética
11.
Curr Opin Neurobiol ; 66: 69-76, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33099180

RESUMO

What I cannot create I do not understand - Richard Feynman 1978 Because primate cortical development exhibits numerous specific features, the mouse is an imperfect model for human cortical development. Expansion of supragranular neurons is an evolutionary feature characterizing the primate cortex. Increased production of supragranular neurons is supported by a germinal zone innovation of the primate cortex: the Outer SubVentricular Zone, which along with supragranular neurons constitute privileged targets of primate brain-specific gene evolution. The resulting cell-type diversity of human supragranular neurons link cell and molecular evolutionary changes in progenitors with the emergence of distinctive architectural features in the primate cortex. We propose that these changes are required for the expansion of the primate cortical hierarchy deploying top-down generative networks with potentially important consequences for the neurobiology of human psychiatric disorders.


Assuntos
Córtex Cerebral , Neurogênese , Animais , Evolução Biológica , Camundongos , Neurônios , Primatas
12.
Curr Opin Neurobiol ; 65: 152-161, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33276230

RESUMO

Databases of consistent, directed- and weighted inter-areal connectivity for mouse, macaque and marmoset monkeys have recently become available and begun to be used to build structural and dynamical models. A structural hierarchy can be defined based by laminar patterns of cortical connections. A large-scale dynamical model of the macaque cortex endowed with a laminar structure accounts for empirically observed frequency-modulated interplay between bottom-up and top-down processes. Signal propagation in the model with spiking neurons displays a threshold of stimulus amplitude for the activity to gain access to the prefrontal cortex, reminiscent of the ignition phenomenon associated with conscious perception. These two examples illustrate how connectomics inform structurally based dynamic models of multi-regional brain systems. Theory raises novel questions for future anatomical and physiological empirical research, in a back-and-forth collaboration between experimentalists and theorists. Directed- and weighted inter-areal cortical connectivity matrices of macaque, marmoset and mouse exhibit similarities as well as marked differences. The new connectomic data provide quantitative information for structural and dynamical modeling of multi-regional cortical circuit providing insight to the global cortical function. Quantification of cortical hierarchy guides investigations of interplay between bottom-up and top-down information processes.


Assuntos
Conectoma , Animais , Encéfalo , Macaca , Camundongos , Neurônios
13.
Front Cell Dev Biol ; 8: 588814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178700

RESUMO

The orderly radial migration of cortical neurons from their birthplace in the germinal zones to their final destination in the cortical plate is a prerequisite for the functional assembly of microcircuits in the neocortex. Rodent and primate corticogenesis differ both quantitatively and qualitatively, particularly with respect to the generation of neurons of the supragranular layers. Marked area differences in the outer subventricular zone progenitor cell density impact the radial glia scaffold compactness which is likely to induce area differences in radial migration strategy. Here, we describe specific features of radial migration in the non-human primate, including the absence of the premigratory multipolar stage found in rodents. Ex vivo approaches in the embryonic macaque monkey visual cortex, show that migrating neurons destined for supragranular and infragranular layers exhibit significant differences in morphology and velocity. Migrating neurons destined for the supragranular layers show a more complex bipolar morphology and higher motility rates than do infragranular neurons. There are area differences in the gross morphology and membrane growth behavior of the tip of the leading process. In the subplate compartment migrating neurons destined for the supragranular layers of presumptive area 17 exhibit radial constrained trajectories and leading processes with filopodia, which contrast with the meandering trajectories and leading processes capped by lamellipodia observed in the migrating neurons destined for presumptive area 18. Together these results present evidence that migrating neurons may exhibit autonomy and in addition show marked area-specific differences. We hypothesize that the low motility and high radial trajectory of area 17 migrating neurons contribute to the unique structural features of this area.

14.
Science ; 369(6503): 506-507, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32732410
15.
Neuroimage ; 215: 116800, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32276072

RESUMO

Macaque monkeys are an important animal model where invasive investigations can lead to a better understanding of the cortical organization of primates including humans. However, the tools and methods for noninvasive image acquisition (e.g. MRI RF coils and pulse sequence protocols) and image data preprocessing have lagged behind those developed for humans. To resolve the structural and functional characteristics of the smaller macaque brain, high spatial, temporal, and angular resolutions combined with high signal-to-noise ratio are required to ensure good image quality. To address these challenges, we developed a macaque 24-channel receive coil for 3-T MRI with parallel imaging capabilities. This coil enables adaptation of the Human Connectome Project (HCP) image acquisition protocols to the in-vivo macaque brain. In addition, we adapted HCP preprocessing methods to the macaque brain, including spatial minimal preprocessing of structural, functional MRI (fMRI), and diffusion MRI (dMRI). The coil provides the necessary high signal-to-noise ratio and high efficiency in data acquisition, allowing four- and five-fold accelerations for dMRI and fMRI. Automated FreeSurfer segmentation of cortex, reconstruction of cortical surface, removal of artefacts and nuisance signals in fMRI, and distortion correction of dMRI all performed well, and the overall quality of basic neurobiological measures was comparable with those for the HCP. Analyses of functional connectivity in fMRI revealed high sensitivity as compared with those from publicly shared datasets. Tractography-based connectivity estimates correlated with tracer connectivity similarly to that achieved using ex-vivo dMRI. The resulting HCP-style in vivo macaque MRI data show considerable promise for analyzing cortical architecture and functional and structural connectivity using advanced methods that have previously only been available in studies of the human brain.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/diagnóstico por imagem , Macaca fascicularis , Macaca fuscata , Macaca mulatta , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia
16.
Cereb Cortex ; 30(2): 656-671, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31343065

RESUMO

Perturbation of the developmental refinement of the corticospinal (CS) pathway leads to motor disorders. While non-primate developmental refinement is well documented, in primates invasive investigations of the developing CS pathway have been confined to neonatal and postnatal stages when refinement is relatively modest. Here, we investigated the developmental changes in the distribution of CS projection neurons in cynomolgus monkey (Macaca fascicularis). Injections of retrograde tracer at cervical levels of the spinal cord at embryonic day (E) 95 and E105 show that: (i) areal distribution of back-labeled neurons is more extensive than in the neonate and dense labeling is found in prefrontal, limbic, temporal, and occipital cortex; (ii) distributions of contralateral and ipsilateral projecting CS neurons are comparable in terms of location and numbers of labeled neurons, in contrast to the adult where the contralateral projection is an order of magnitude higher than the ipsilateral projection. Findings from one largely restricted injection suggest a hitherto unsuspected early innervation of the gray matter. In the fetus there was in addition dense labeling in the central nucleus of the amygdala, the hypothalamus, the subthalamic nucleus, and the adjacent region of the zona incerta, subcortical structures with only minor projections in the adult control.


Assuntos
Encéfalo/citologia , Encéfalo/embriologia , Neurônios/fisiologia , Tratos Piramidais/citologia , Tratos Piramidais/embriologia , Animais , Axônios/fisiologia , Macaca fascicularis , Vias Neurais/citologia , Vias Neurais/embriologia , Técnicas de Rastreamento Neuroanatômico
18.
Natl Sci Rev ; 7(7): 1258-1259, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34692150
19.
Cereb Cortex ; 30(3): 1407-1421, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31504286

RESUMO

There is an extensive modification of the functional organization of the brain in the congenital blind human, although there is little understanding of the structural underpinnings of these changes. The visual system of macaque has been extensively characterized both anatomically and functionally. We have taken advantage of this to examine the influence of congenital blindness in a macaque model of developmental anophthalmia. Developmental anophthalmia in macaque effectively removes the normal influence of the thalamus on cortical development leading to an induced "hybrid cortex (HC)" combining features of primary visual and extrastriate cortex. Here we show that retrograde tracers injected in early visual areas, including HC, reveal a drastic reduction of cortical projections of the reduced lateral geniculate nucleus. In addition, there is an important expansion of projections from the pulvinar complex to the HC, compared to the controls. These findings show that the functional consequences of congenital blindness need to be considered in terms of both modifications of the interareal cortical network and the ascending visual pathways.


Assuntos
Cegueira/congênito , Corpos Geniculados/fisiopatologia , Córtex Visual/fisiopatologia , Vias Visuais/fisiologia , Animais , Cegueira/fisiopatologia , Mapeamento Encefálico/métodos , Feminino , Corpos Geniculados/fisiologia , Macaca fascicularis , Masculino , Neurônios/fisiologia , Tálamo/fisiologia , Tálamo/fisiopatologia , Córtex Visual/fisiologia , Vias Visuais/fisiopatologia
20.
Proc Natl Acad Sci U S A ; 116(52): 26173-26180, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31871175

RESUMO

Advances in neuroimaging and neuroanatomy have yielded major insights concerning fundamental principles of cortical organization and evolution, thus speaking to how well different species serve as models for human brain function in health and disease. Here, we focus on cortical folding, parcellation, and connectivity in mice, marmosets, macaques, and humans. Cortical folding patterns vary dramatically across species, and individual variability in cortical folding increases with cortical surface area. Such issues are best analyzed using surface-based approaches that respect the topology of the cortical sheet. Many aspects of cortical organization can be revealed using 1 type of information (modality) at a time, such as maps of cortical myelin content. However, accurate delineation of the entire mosaic of cortical areas requires a multimodal approach using information about function, architecture, connectivity, and topographic organization. Comparisons across the 4 aforementioned species reveal dramatic differences in the total number and arrangement of cortical areas, particularly between rodents and primates. Hemispheric variability and bilateral asymmetry are most pronounced in humans, which we evaluated using a high-quality multimodal parcellation of hundreds of individuals. Asymmetries include modest differences in areal size but not in areal identity. Analyses of cortical connectivity using anatomical tracers reveal highly distributed connectivity and a wide range of connection weights in monkeys and mice; indirect measures using functional MRI suggest a similar pattern in humans. Altogether, a multifaceted but integrated approach to exploring cortical organization in primate and nonprimate species provides complementary advantages and perspectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...